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Determination of wave speed and wave separation in the arteries
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Abstract

Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the
wave front, dP; is related to the change in velocity, dU; that it induces by the ‘water hammer’ equation, dP ¼ 7rc dU; where r is the
density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a

straight line when P is plotted against U with slope rc: When both forward and backward waves are present, the PU-loop is no
longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this
provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it

is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are
prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle. r 2001
Elsevier Science Ltd. All rights reserved.

1. Introduction

The wave nature of pressure and flow in the arteries
has long been recognised (Young, 1809). Recognition of
the influence of wave reflections came much later but it
is now generally accepted that ‘There is in fact no
circumstance in life where pressure and flow are not
altered by wave reflection; this is a consequence of the
varying properties of the vascular bed along its length, its
branching pattern, and particularly the steep rise in fluid
resistance within the muscular arterioles’. (Nichols and
O’Rourke, 1990). The first technique for separating
measured pressure and flow waveforms into their
forward and backward components is based upon the
impedance analysis and the assumption that the higher
harmonics of the waveform will be dissipated so quickly
that the higher harmonics of the reflected wavetrains
will be negligible compared to those in the forward
wavetrains (Westerhof et al., 1972). The ratio of
pressure to flow for these higher harmonics is called
the characteristic impedance, Z0 ¼ %PPþ= %UUþ ¼ � %PP�= %UU�;
where %PP is magnitude of the sinusoidal pressure, %UU is

magnitude of the average velocity and subscripts ‘þ’ and
‘�’ refer to forward and backward waves.

Parker and Jones (1990) suggested an alternative
method of separating forward and backward waves
based upon the method of characteristics solution of the
one-dimensional conservation equations for flow in the
arteries. This analysis, which forms the basis of the
current work, is based upon a non-linear analysis and
considers the propagation of incremental wave fronts
rather than sinusoidal wave trains. It includes the effects
of convection of the waves and the possibility that the
wave speed can vary with instantaneous pressure but
assumes that the forward and backward waves sum
linearly when they interact. This assumption was relaxed
by Pythoud et al. (1996), who considered the full non-
linear analysis. Their work concludes that the differences
between the fully non-linear and the linearised analyses
are small. We believe that in most cases they do not
warrant the considerable extra work involved in the
numerical inversion of integral equations which their
method requires.

Both the impedance method and the method dis-
cussed here for wave separation require knowledge of
the wave speed, the speed at which disturbances will
propagate in the elastic vessel in the absence of any*Corresponding author.
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convective velocity. Many methods for determining
wave speed in arteries have been proposed (Milnor,
1989). Many of these measurements are based upon
simultaneous measurements of pressure or flow at two
sites in the arteries and the determination of the time it
takes a wave to propagate from one site to the other. By
their nature, these measurements can only indicate the
average wave speed over the distance between the
measurement sites and, because the properties of arteries
can vary significantly throughout the arterial tree, this
can be a serious shortcoming. For this reason we believe
that methods which determine the local wave speed from
the simultaneous measurement of pressure and velocity
at the same site are preferable. Herein we present such a
method and discuss its application to experimental data.

Given knowledge of the local wave speed, measured
pressure and velocity waveforms can be separated into
their forward and backward components. We will
present a method based upon the calculation of wave
intensity which derives from the general solution of the
one-dimensional conservation equations in the arteries
(Parker and Jones, 1990). This theory can be developed
for very general conditions but, for ease of presentation,
we will neglect both viscous losses and fluid transport
out of the arteries. These effects can be included in the
analysis without affecting the wave nature of the
solution. However, because their effects are relatively
small and because including them would require more
detailed information about local haemodynamics than is
available experimentally, we omit them here.

2. Theoretical background

The theoretical basis of this work is the solution of the
one-dimensional equations for flow in an elastic artery
using the method of characteristics (Parker and Jones,
1990). This analysis is somewhat complex but the results
are surprisingly simple: Disturbances to the flow create
changes in pressure, P; and velocity, U; which propagate
downstream (forward) with speed U þ c and upstream
(backward) with speed U � c; where c is the wave speed.
Furthermore, the wavespeed, c ¼ 1=

ffiffiffiffiffiffiffi
rD

p
; is simply a

function of the density of the blood r and the
distensibility of the artery, D ¼ ð1=AÞ dA=dP; where A
is the cross sectional area of the artery.

From the conservation of mass and momentum, there
is a simple relationship between the changes in pressure
and velocity across any of these wavefronts given by the
‘water hammer’ equation

dP7 ¼ 7rc dU7; ð1Þ

where r is the density of the blood and the ‘þ’ sign refers
to forward travelling waves and the ‘�’ sign refers to
backward waves. If the forward and backward waves
are additive, i.e.

dP ¼ dPþ þ dP�; ð2Þ

dU ¼ dUþ þ dU�; ð3Þ

then it is possible to calculate the forward and backward
waves (incremental wave fronts) from the measured dP
and dU:

dP7 ¼ 1
2ðdP7rc dUÞ; ð4Þ

dU7 ¼ 71
2ðdP=rc7dUÞ: ð5Þ

Once we have calculated the changes in pressure and
velocity in the forward and backward waves, the
forward and backward pressure waveform can be
calculated by simply summing the instantaneous differ-
ences

Pþ ¼ Pd þ
Xt

t¼0

dPþ; P� ¼
Xt

t¼0

dP�; ð6Þ

Uþ ¼
Xt

t¼0

dUþ; U� ¼
Xt

t¼0

dU�; ð7Þ

where the integration constant, Pd; is taken to be the
diastolic pressure (defined as the minimum pressure
during the cardiac cycle) which is ascribed, arbitrarily,
to the forward pressure wave. The integration constant
for U is taken to be zero.

When considering forward and backward waves, it is
often convenient to define the wave intensity
dI ¼ dP dU; which represents the flux of energy carried
by the wave. Waves are generally classified by the sign of
the change in pressure that they produce, compression
waves have dP > 0 and expansion waves have dPo0:
From the water hammer equation we see that forward
compression waves cause acceleration of the blood,
dU > 0; while forward expansion waves cause decelera-
tion, dUo0: To the contrary, backward compression
waves cause deceleration of the blood while backward
expansion waves cause acceleration. This somewhat
confusing state of affairs is simplified if we consider the
wave intensity because the wave intensity of all forward
waves is positive, dIþ ¼ dPþdUþ > 0 and of all back-
ward waves is negative, dI� ¼ dP�dU�o0: Further-
more, the measured wave intensity at every instant is the
sum of the wave intensities of the forward and backward
waves, dI ¼ dIþ þ dI�; and thus reflects the net
importance of forward and backward waves at each
instant in the cardiac cycle.

From the above, it is apparent that it is necessary to
know the wave speed before the measured pressure and
velocity waveforms can be separated into their forward
and backward components. Fortunately, the theory also
suggests a way of determining the local wave speed.
During the periods when there are no backward waves,
e.g. at the start of systole, the water hammer equation
(1) indicates that there should be a linear relationship

A.W. Khir et al. / Journal of Biomechanics 34 (2001) 1145–11551146



between the change in pressure and the change in
velocity. Thus, if we plot P vs. U over a cardiac cycle, a
PU-loop, the part of the loop corresponding to early
systole should be linear with slope equal to rc:
Developing this method for determining the wavespeed
is one of the principal objectives of this paper.

For the results presented here, the slope of the linear
portion of the PU-loop was determined by fitting a
straight line to the appropriate part of the data by eye
using a mouse driven graphical interface on the
computer. An alternative would be to select the portion
of the data to be analysed and then determine the best fit
line by linear regression. While this procedure does
provide a quantitative measure of the goodness of fit, it
is also dependent upon the choice of the segment of data
to be analysed which is also subjective. Comparison of
results obtained from the same data by independent
analysts using the interactive computer program showed
that the results always differed by less than 5%. As will
be demonstrated below, this difference in the wave speed
has a negligible effect on the results for the separation of
waves into the forward and backward components and
we therefore opted for this simpler procedure for
determining the slope and hence the wave speed.

The assumption that there is a period in early systole
when there are no reflected waves also provides us with a
means of determining the simultaneity of the measured
pressure and velocity waveforms. This can be important

practically because most methods of measuring velocity
or flow rate involve some delay in the transducer output,
either low-pass filters in electromagnetic flow meters or
processing algorithms in Doppler ultrasound devices. By
shifting the velocity waveform in increments of the
sampling frequency and plotting the PU-loop, it is
generally very easy to determine the time shift which
produces the best straight line relationship during early
systole.

Having determined the wavespeed, we use the
equations above to determine the forward and back-
ward waves from the simultaneously measured pressure
and velocity. In the systemic arteries, the forward waves
are mainly generated by the heart and the backward
waves arise from reflections from the periphery and
therefore the calculation of the separated waves can aid
in the interpretation of the physiology and pathology of
the cardiovascular system.

3. Results

3.1. Determination of the wave speed

Fig. 1 shows the pressure and velocity waveforms and
the corresponding PU-loop measured at the proximal
end of a latex tube in response to an approximately half
sinusoidal injection of fluid from a syringe pump (Khir,

Fig. 1. PðtÞ; UðtÞ and the PU-loop measured in a latex tube in response to a half sinusoidal injection of fluid from a syringe pump at the upstream

end of the tube.
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1999). The tube was 110 cm long and 1:3 cm in diameter
and it was connected at the distal end to a constant
height reservoir. The slope of the PU-loop is very linear
from the start of the injection to the point of peak
velocity and the slope corresponds to a wave speed of
4:5 m=s assuming a density of 9% saline of 1080 kg=m3:
From this measured wave speed and the distance from
the point of measurement to the distal reservoir and
back again, we would expect a reflected wave to arrive at
the measurement site 0:5 s from the start of the injected
waveform. Indeed, we see that the P and U waveforms
do begin to deviate significantly from each other after
this time interval.

The PU-loops from data measured by a catheter
mounted strain gauge and a cuff ultrasonic flow meter in
the ascending aorta of an anaesthetised dog under
control conditions are shown in the bottom part of
Fig. 2(a) (Khir, 1999). Because time becomes a para-
meter of the curves and is not apparent, we plot P as a
function of t with a common axis in Fig. 2(b). Note, in
particular, the linear portion of the PU-loop corre-
sponding to the initial portion of systole. The linearity
of this part of the curve indicates that only forward
waves are present and the slope of the straight line
corresponds to rc: The indicated slope corresponds to
c ¼ 6:2 m=s; taking the density of blood to be
1040 kg=m3: Also note that the PU-loop deviates from

the linear at PC15 KPa and that the time of this
deviation indicates the time of arrival of the first of the
reflected waves.

Also shown in the upper half of Fig. 2(a) and (b) are
data measured in the same dog when the upper thoracic
aorta was occluded 14:5 cm from the measurement site
in the ascending aorta. We see first that the mean
pressure is greatly increased during occlusion of the
aorta. Secondly, the part of the PU-loop corresponding
to the start of systole is still linear with a slope
corresponding to c ¼ 7:9 m=s; significantly larger than
that determined before occlusion as would be expected
from the higher mean pressure. Finally, we note that the
linear part of the curve deviates from the linear much
sooner because of the early arrival of a backward,
reflected wave from the site of occlusion. Again the time
over which the PU-loop is linear corresponds well to the
time of travel of the wave with the measured wave speed
over the measured distance to the site of occlusion,
37 ms; or approximately seven sample points.

Finally, Fig. 3 shows a PU-loop measured with a
catheter mounted strain gauge and Doppler ultrasound
velocity transducer in the main pulmonary artery of a
patient undergoing catheterisation for coronary artery
disease. Once again, we note that there is a distinct
linear portion of the curve during early systole. In this
case, the slope corresponds to a wave speed of 5:1 m=s:

Fig. 2. (a) The PU-loop, the dots correspond to the data sampled at 200 Hz and (b) PðtÞ measured in the ascending aorta of the dog under control

conditions (lower curves) and with total occlusion of the upper thoracic aorta (upper curves). The dashed lines indicates the slope of the linear

portion of the curve during early systole.
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3.2. Determination of time lags

Fig. 4 shows the effect of a time lag on the PU-loop.
The central loop corresponds to the P and U data
adjusted to correct for the time lag of the velocity
transducer determined by calibration prior to the
experiment. The other curves correspond to U leading
and lagging P by 1 and 2 sampling intervals. If the
velocity lags the pressure too much, the initial slope
approaches N and if the pressure lags the velocity the
initial slope approaches zero. As the lag is changed from
one extreme to the other, the initial portion of the curve
goes from concave to linear to convex as illustrated in
Fig. 4. In cases where transducer calibrations are
unavailable, we have found this to be a robust and
repeatable method of determining the appropriate time
lag between the pressure and velocity measurements.

3.3. Separation of forward and backward waves

Fig. 5 shows the pressure and velocity measured in the
ascending aorta of an anaesthetised dog under control
conditions for a period including three cardiac cycles
(the same data used in Fig. 2). Below these measure-
ments is the wave intensity dI calculated for these data.

Three characteristics of the wave intensity waveform
should be noted:

(a) The positive peak occurring at the start of systole
represents the initial, forward compression (dP > 0)
wave generated by the contraction of the ventricle.

(b) The second positive peak occurring at the end of
systole indicates that there is a forward expansion
(dPo0) wave dominating the flow at this time of the
cardiac cycle. This indicates that it is a forward wave
generated by the inability of the ventricle to contract
quickly enough to keep up with the momentum of the
blood in the arteries generated by the earlier part of
systole that is the predominant cause of the stopping of
blood flow at the end of systole (Parker et al., 1988).

(c) In mid-systole there is a period when the wave
intensity is negative, indicating that backward, reflected
waves are dominating the forward waves.

Fig. 6(a) shows the net wave intensity dI and
the separated wave intensities dI7 for the data shown
in Fig. 5 and the lower part of Fig. 2. The net
wave intensity is the algebraic sum of a positive forward
wave intensity and a negative backward wave intensity
and, because there is little overlap of the forward
and backward waves, most of the information about
the waves can be inferred from the net wave intensity
alone.

Fig. 3. The PU-loop measured in the human main pulmonary artery. The dashed line indicates the slope of the linear portion of the curve during

early systole.
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Fig. 4. The PU-loop for different time lags between P and U: The centre loop represents the optimal condition, no time lag, as judged by the linearity

of the portion of the loop corresponding to early systole indicated by the dashed line. The two curves above and below the optimal loop correspond

to U lagging and leading P by 1 and 2 sampling intervals.

Fig. 5. (a) PðtÞ and UðtÞ measured in the ascending aorta of the dog under control conditions. (b) dI calculated from the data in (a); aFthe initial,

forward compression wave at the start of systole, bFforward expansion wave at the end of systole, cFbackward, reflected waves in mid-systole.
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This is not the case when the aorta is occluded as for
the data shown in the top half of Fig. 2. The net wave
intensity dI and the separated wave intensities dI7 for
these data are shown in Fig. 6(b). In this case, the
reflected wave arrives in the ascending aorta well before
the end of the initial forward compression wave,

information that cannot be inferred from the net wave
intensity alone. The dashed lines in Fig. 6(b) correspond
to the forward and backward wave intensities calculated
for a wave speed 20% larger and smaller than the wave
speed determined from the PU-loop. Whenever it has
been possible in our experiments to compare PU-loop

Fig. 6. dI and dI7 calculated for data measured in the ascending aorta of the dog (a) under control conditions and (b) with a total occlusion of the

upper thoracic aorta. Note the different scales of the ordinate. dIþ is always positive, dI� is always negative and the darker line, dI ; is the sum of the

two. In (b) the dashed lines indicate dIþ and dI� calculated for values of c720%:
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results with foot-to-foot measurements, the differences
have always been much less than 20%. This shows that
the sensitivity of the separation process is not highly
dependent upon the accuracy of the determination of
the wave speed.

The separated pressure and velocity waveforms, P7

and U7; calculated from the data measured in the
ascending aorta under control conditions are shown in
Fig. 7. The waveform of the backward wave, P� and
U�; indicate that the reflected waves are initially
compression waves, dP� > 0 and dU�o0; followed by
expansion waves during the latter parts of the cardiac
cycle. Since this is the same as the pattern of the forward
waveform, this indicates that the wave reflections are
predominantly positive.

4. Conclusions and discussion

Previous discussions of wave speed and the separation
of waves into their forward and backward components
in the arteries have been expressed almost exclusively in
terms of the sinusoidal wavetrains which are the basis of
impedance analyses (Westerhof et al., 1972; Milnor,
1989; Nichols and O’Rourke, 1990). In the absence of
reflections, the ratio of the pressure and the velocity
waveforms, the characteristic impedance, is Zc ¼
%PP= %UU ¼ rc where %PP is the magnitude of a sinusoidal

pressure pulse and %UU is the magnitude of the accom-

panying sinusoidal average velocity, which is consistent
with the waterhammer equation for sinusoidal wave-
forms.

The major difference between the two approaches is in
the identification of the conditions under which reflec-
tions are not important. In the method proposed here,
this is done simply by determining the period during
early systole when there is a linear relationship between
P and U. In the frequency-based impedance analysis it is
usually argued that the increasing dissipation with
increasing frequency makes it likely that reflected waves
will be less important for the higher harmonics. Since
noise also increases with increasing frequency, the
characteristic frequency is generally taken as the average
impedance calculated for a range of frequencies or
harmonics. The choice is somewhat subjective and its
effect on the determination of the characteristic im-
pedance, and therefore the wave speed, has been studied
by Dujardin and Stone (1981). Analysing data from 10
dogs using the averaging algorithms suggested by
different authors to calculate Zc; their plotted results
show a range of values varying at least 20% from the
middle of the range (Belinda et al., 1994). This range of
variation of the characteristic impedance depending
upon the averaging algorithm is consistent with our
experience and makes a definitive comparison of
methods difficult.

Interestingly, Dujardin and Stone (1981) also de-
scribed a time-based method for determining wave

Fig. 7. (a) The measured pressure, PðtÞ; and the separated forward and backward pressure waveforms, P7ðtÞ (b) The measured velocity, UðtÞ; and the

separated forward and backward velocity waveforms, U7ðtÞ; measured in the ascending aorta of the dog under control conditions.
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speed. Arguing that the early upstroke of the pressure
and flow curves during early ejection should be
governed by the high-frequency components of the
input impedance spectrum and therefore DP=DU at the
time of maximum dP=dt and dU=dt should be compar-
able to the characteristic impedance. Apart from the
theoretical justification and the use of U–P loops, this
method is essentially the same as that proposed in this
paper. Li (1986) also used the characteristic impedance
relationship to suggest that DP=DU during the rapid rise
could be used to determine c although there is no
discussion of how to determine the period over which
DP and DU should be taken.

Other methods which have been used to determine the
wave speed involve measuring the time that it takes a
wave to travel over a measured distance along the
artery. The wave can be measured from simultaneous
pressures (Latham et al., 1985) or velocities measured by
Doppler ultrasound (Avolio et al., 1983). Apart from
the difficulties of making simultaneous measurements at
two different sites and the difficulty in measuring the
distance accurately, these methods can, at best, provide
an average wave speed over the distance between the
two sites of measurement. More recently, magnetic
resonance methods of measuring wave speed have been
proposed that overcome some of these problems
(Dumoulin et al., 1993) but their accuracy has yet to
be established.

We carried out a number of experiments with latex
tubing to ascertain the accuracy of this method of
determining the wave speed. In these experiments we
measured P and U at the upstream end of the tube and
P at the downstream end so that we could compare wave
speed determined using the PU-loop with that deter-
mined from the foot-to-foot delay time between the
upstream and downstream measurements of P (Khir,
1999). In general, the agreement between the two
measurements of wave speed was excellent, differing at
most by 5%. Both methods presented minor difficulties
in the determination of wave speed. The PU-loop
method is sensitive to the choice of the portion of the
curve to be analysed by linear regression for the slope.
The foot-to-foot method is similarly sensitive to the
method used to determine the foot of the waveforms.
Analysis of the error sensitivities of the two methods
suggested that neither is inherently more accurate than
the other and that the relatively small differences
between the two methods of measurement cannot be
resolved.

The application of the PU-loop method of determin-
ing wave speed from measurements in arteries seems
very promising. In normal conditions in both the
ascending aorta (Fig. 2) and the main pulmonary artery
(Fig. 3) there is a very distinct linear portion of the curve
corresponding to early systole. From our experience
with other data from these experiments and from others

not described, we find that this linear portion is a regular
and easily identifiable feature of PU-loops. Once the
linear portion is identified, the slope is easily obtained,
either by eye or by linear regression, and wave speed
follows simply by dividing by the density of blood. One
indication of the robustness of the method is seen in
both Figs. 2 and 3 where three successive cardiac cycles
are plotted giving a good indication of the beat by beat
variation of the loops.

Fig. 2 also shows the method being applied to two
very different conditions, control conditions and during
complete occlusion of the upper thoracic aorta. We see
that under control conditions (the lower curves) the
linear portion of the PU-loop extends over approxi-
mately the first two thirds of the pressure rise in early
systole. The deviation of the curve from the linear is
fairly gentle and, in this particular case, concave
towards the U axis. This means that the reflected waves
first arrive at the ascending aorta at this time and are
relatively small. It also means that these first reflected
waves are expansion waves (dP�o0) which, inciden-
tally, is not always the case.

When the aorta is occluded (the upper curves) the
linear portion of the PU-loop is much shorter,
corresponding to less than the first quarter of the
pressure rise during early systole. The curve deviates
from the linear very sharply and in the direction of
increasing pressure, indicating that a large reflected
compression wave (dP� > 0) has arrived, just as would
be expected when the descending aorta is occluded. Even
though the time when only forward waves are present is
short, it is still easy to find the slope of the linear part of
the PU-curve and determine the wave speed from it. As
can be seen in Fig. 2, the slope and therefore the wave
speed is higher during clamping of the aorta. Since
arteries are generally less distensible at increased
pressure, this increase in wave speed is expected due to
higher mean pressure during aortic clamping.

The wave speed determined by the PU-loop method is
the local wave speed at the site of measurement of P and
U: Because c varies with distance along an artery, due to
taper or changes in the distensibility, and from vessel to
vessel across bifurcations, the calculated value of c will
be different from c determined from a transit time
measurement which corresponds to a weighted average
of c over the distance between measurement sites. The
value of a local measure of c; and hence distensibility, is
shown by the results for the main pulmonary artery seen
in Fig. 3. Because the main pulmonary artery in humans
branches after only 3–4 cm; it is virtually impossible to
use a wave travel time to determine wave speed.

The separation of forward and backward waves
depends only upon the density of blood, which varies
only minimally, and the local wave speed, which is dis-
cussed above. In the absence of large backward waves,
as is commonly the case in the normal circulation,
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the net wave intensity, dI ¼ dP dU; is very similar to the
forward wave intensity, dIþ ¼ dPþ dUþ; and most of
the information about the waves can be determined
from the magnitude and sign of dI : This is the case
shown in Fig. 6(a) for the ascending aorta of the dog
under control conditions where dI is very similar to dIþ
in early and late systole and to dI� in middle systole.
The initial positive peak of dI represents the forward
compression wave generated by the initial contraction of
the left ventricle. This is followed during mid-systole by
a rather small but broad negative peak of dI : The small
magnitude of dI during this time indicates that the
reflected waves reaching the ascending aorta, and hence
the heart, are normally very small suggesting that the
arterial system is well matched for the transmission of
forward waves. The broadness of this peak is undoubt-
edly due to the large variety of distances to the major
reflection sites, probably the high resistance peripheral
arterioles, in the systemic circulation. At the end of
systole there is another positive peak of dI representing
a forward expansion wave generated by the ventricle
when it ceases to contract (Parker et al., 1988). Little or
no wave intensity is seen during diastole.

If there are large reflected waves, as is the case when
the aorta is occluded as shown in the top half of Fig. 2,
then the net wave intensity can be misleading indicating,
for example, zero wave intensity at a time when a large
forward wave is cancelled by an equally large backward
wave. This is seen in Fig. 6(b) which shows dI and dI7
calculated from P and U measured during aortic
clamping. Here the large reflected wave indicated by
the peak in dI� arrives back to the ascending aorta while
there is still a substantial forward wave generated by the
initial ventricular contraction. Here dI ¼ dIþ þ dI�
gives a misleading picture about the timing and the
magnitude of the reflected wave which can only be
determined from the separated wave intensities. In fact,
the second peak of dI� seen in Fig. 6(b), which we
believe is the reflection of the second peak of dIþ from
the site of occlusion, would be very easy to miss in the dI
curve.

The dashed lines on either side of the curves of dIþ
and dI� in Fig. 6(b) are the separated wave intensities
calculated using a value for c which is 20% larger and
smaller than the value calculated from the PU-loop in
Fig. 2. This was done to test the sensitivity of the wave
separation calculation to c: Since it would be difficult to
make a 20% error in the determination of the slope of
the linear portion of the PU-loop, these results give us a
great deal of confidence in the reliability of the
separation of the measured P and U into their forward
and backward components.

The separated P7 and U7 waveforms shown in Fig. 7
are calculated by integrating the differential dP7 and
dU7 curves. It is harder to discern the magnitude and
timing of the individual waves from these curves but

they are useful in indicating their overall effects. Note
that if we are interested in the pressure producing
performance of the heart it may be better to consider the
Pþ waveform rather than the P waveform which can
include a significant effect from wave reflections.

The P7 and U7 curves also illustrate a shortcoming
of the wave intensity analysis. During diastole there is a
regular decrease of pressure which is not due to waves,
as evidenced by the absence of any measurable velocity
during diastole, but to the Windkessel effect. The result
of this on the separation algorithm can be seen in the
prediction of unrealistically large, self-cancelling values
of Uþ and U� during diastole. Correction of this
anomaly will require incorporation of the mechanics of
the global properties of the arterial system which give
rise to the Windkessel effect with those of the local
mechanics which give rise to the wave nature of the flow.

In conclusion, we believe that the PU-loop method of
determining wave speed is well founded theoretically
and easy to implement experimentally. From our
experiments, we believe that the wave speeds thus
determined are at least as accurate as those determined
by other methods and certainly superior to time of flight
methods for determining local wave speeds. Because of
the direct relationship between the local wave speed and
the local distensibility of the artery, the determination of
wave speed can be useful in assessing changes in the
mechanical properties of arteries with disease or
pharmacological intervention. Finally, we have demon-
strated that it may be important to separate forward and
backward waves in order to assess accurately the timing
and magnitude of arterial waves.
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